Highest vectors of representations (total 4) ; the vectors are over the primal subalgebra. | g7+3/4g1 | g3 | g6 | g9 |
weight | 2ω1 | 2ω2 | 3ω1+ω2 | 6ω1 |
Isotypical components + highest weight | V2ω1 → (2, 0) | V2ω2 → (0, 2) | V3ω1+ω2 → (3, 1) | V6ω1 → (6, 0) | |||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | |||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
| |||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 2ω1 0 −2ω1 | 2ω2 0 −2ω2 | 3ω1+ω2 ω1+ω2 3ω1−ω2 −ω1+ω2 ω1−ω2 −3ω1+ω2 −ω1−ω2 −3ω1−ω2 | 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 | |||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 2ω1 0 −2ω1 | 2ω2 0 −2ω2 | 3ω1+ω2 ω1+ω2 3ω1−ω2 −ω1+ω2 ω1−ω2 −3ω1+ω2 −ω1−ω2 −3ω1−ω2 | 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 | |||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M2ω1⊕M0⊕M−2ω1 | M2ω2⊕M0⊕M−2ω2 | M3ω1+ω2⊕Mω1+ω2⊕M3ω1−ω2⊕M−ω1+ω2⊕Mω1−ω2⊕M−3ω1+ω2⊕M−ω1−ω2⊕M−3ω1−ω2 | M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1 | |||||||||||||||||||||||||
Isotypic character | M2ω1⊕M0⊕M−2ω1 | M2ω2⊕M0⊕M−2ω2 | M3ω1+ω2⊕Mω1+ω2⊕M3ω1−ω2⊕M−ω1+ω2⊕Mω1−ω2⊕M−3ω1+ω2⊕M−ω1−ω2⊕M−3ω1−ω2 | M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1 |