Processing math: 100%
Subalgebra A101+A11C13
11 out of 16
Computations done by the calculator project.

Subalgebra type: A101+A11 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A101 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: C13

Elements Cartan subalgebra scaled to act by two by components: A101: (6, 8, 4): 20, A11: (0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g1+g7, g3
Positive simple generators: 4g7+3g1, g3
Cartan symmetric matrix: (1/5002)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (20002)
Decomposition of ambient Lie algebra: V6ω1V3ω1+ω2V2ω2V2ω1
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 4) ; the vectors are over the primal subalgebra.g7+3/4g1g3g6g9
weight2ω12ω23ω1+ω26ω1
Isotypic module decomposition over primal subalgebra (total 4 isotypic components).
Isotypical components + highest weightV2ω1 → (2, 0)V2ω2 → (0, 2)V3ω1+ω2 → (3, 1)V6ω1 → (6, 0)
Module label W1W2W3W4
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
4/3g7g1
4/3h3+8/3h2+2h1
2/3g1+2/3g7
Semisimple subalgebra component.
g3
h3
2g3
g6
g5
g4
g2
g2
g4
g5
g6
g9
g8
2g7g1
2h34h2+2h1
4g16g7
10g8
20g9
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above2ω1
0
2ω1
2ω2
0
2ω2
3ω1+ω2
ω1+ω2
3ω1ω2
ω1+ω2
ω1ω2
3ω1+ω2
ω1ω2
3ω1ω2
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ω1
0
2ω1
2ω2
0
2ω2
3ω1+ω2
ω1+ω2
3ω1ω2
ω1+ω2
ω1ω2
3ω1+ω2
ω1ω2
3ω1ω2
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ω1M0M2ω1M2ω2M0M2ω2M3ω1+ω2Mω1+ω2M3ω1ω2Mω1+ω2Mω1ω2M3ω1+ω2Mω1ω2M3ω1ω2M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1
Isotypic characterM2ω1M0M2ω1M2ω2M0M2ω2M3ω1+ω2Mω1+ω2M3ω1ω2Mω1+ω2Mω1ω2M3ω1+ω2Mω1ω2M3ω1ω2M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1

Semisimple subalgebra: W_{1}+W_{2}
Centralizer extension: 0

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00)
(0.00, 1.00)
0: (1.00, 0.00): (700.00, 300.00)
1: (0.00, 1.00): (200.00, 350.00)




Made total 450 arithmetic operations while solving the Serre relations polynomial system.